
Lecture 6 

Physics 404 

 

 The multiplicity function has one more contribution to statistical mechanics – it can be turned 

into a probability distribution function (PDF).  In other words                   
 

  
        

represents the probability that a spin system made up of N spins will have a spin excess of 2s, assuming 
each and every microscopic state is equally likely.  We can now calculate average values, and therefore 

macroscopic quantities, as                     
 

  
, where      is some function that depends on 

the microscopic state of the system.  We did the example of the mean spin excess          and the 
variance of the spin excess           as examples in class (check Appendix A of Kittel and Kroemer for 
the details of how to perform the integrals).  These results say that the spin system is most likely to be 

found in a state of zero spin excess, with root-mean-square deviation             from zero.  For a 
macroscopic spin system (N ~ 1024) the fractional width of this distribution is incredibly narrow: 
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 The Fundamental Assumption of Statistical Physics is that a closed system is equally likely to 
be in any of the quantum states accessible to it.  By closed we mean a system with fixed total number 
of particles N and energy U, and subject to constant electric, magnetic, gravitational fields, etc.  By 
accessible states we mean those quantum states that are consistent with the constraints of fixed N and 
U and constant fields.  This situation is often called the microcanonical ensemble. 

 Now consider two spin systems brought into “thermal contact.”  Assume that each system 

experiences the same uniform magnetic field    , and the moments of the spins are the same, me.  Thus 
the energy difference between successive states         is the same in both systems.  We shall 
assume that the two systems cannot exchange particles, but they can exchange energy.  In other words, 
N = N1 + N2 is fixed, along with N1 and N2.  However, s= s1 + s2 is also fixed (along with the total energy 
          ), but s1 and s2 can vary.  To see how s1 and s2 can vary, consider a spin “down” particle 
in system 1 and a spin “up” particle in system 2.  Here “up” and “down” refer to their quantum spin 

orientation relative to the external magnetic field    .  The “down” spin in system 1 is in a higher energy 
state (+meB), while the “up” spin in system 2 is in a lower energy state (-meB).  Now, they can undergo a 
coordinated pair of flips in which the spin in system 1 flips to “up” and at the same time the spin in 
system 2 flips to “down”.  This involves an exchange of energy         from system 1 to system 2, 
but does not violate the constraints of fixed N, N1, N2, and s.  Such coordinated spin flips constitute the 
“thermal contact” and greatly enhance the number of accessible states for the coupled system. 

 We showed in class that the multiplicity of the coupled system that can exchange energy but not 

particles is given by                             
        
        .  The product of multiplicities comes 

about because the combined system has quantum states described by a combination of any possible 
state in spin system 1 with any possible state in spin system 2.  The sum comes about because the two 
systems can exchange any amount of energy between the two extremes of all spins “up” in spin system 
1 (        ) to all spins “down” in spin system 1 (        ).  Note that we assumed system 1 is 
smaller than system 2,      .  This sum is dominated by one term with a maximum value for the 
product                     , as was the case for the multiplicity function of a single isolated 



system.  We take the derivative with respect to s1 and set it equal to zero to find the value of s1 that 
maximizes the multiplicity.  To find the condition for maximum multiplicity we first took the logarithm of 
the function (to cut it down to size) and used the Gaussian approximation for the multiplicities, valid in 

the limit of large N and small |s|.  Note that the value of s1 that gives a zero of 
 

   
                 

    is the same value of s1 that gives a zero of 
 

   
                         , hence no error is 

introduced by taking the logarithm.  The result of the maximization process was a condition for 

“equilibrium” of the two systems in thermal contact: 
  

  
 

  

  
 

 

 
, i.e. that the fractional spin excesses 

of the two systems be equal.  (The sign of 
 

 
 is dictated by the constant total energy  .)  In other words, 

after thermal equilibrium is achieved, the two parts of the system adopt a common value for the 
fractional spin excess, which is also equal to the global value of the fractional spin excess of the entire 
system.  This situation is reminiscent of what happens when a “hot” object is brought into thermal 
contact with a “cold” object and they eventually come to thermal equilibrium at a shared value for the 
temperature – the 0th Law of Thermodynamics.  In fact we show exactly this in the next lecture. 

 To illustrate how sharply peaked the        function is, use the Gaussian approximation for the 
multiplicities and set          , and          , where     and     are the values of    and    that 
maximize       , and   is the deviation from equilibrium.  The multiplicity now becomes           

                          
               .  Take            and a deviation of       , 

so that          , giving                                     
                    , 

which is an amazingly smaller number than the maximum value of the function,          .  This 
calculation shows that even small deviations from the equilibrium spin configuration (1 part in     ) are 
unbelievably unlikely.  The multiplicity function is so strongly peaked that only that state which 
maximizes the multiplicity, and a narrow range of states nearby, completely dominate the equilibrium 
properties of the system.  This is an extremely important concept that is fundamental to the study of 
statistical mechanics.  We will generalize this result to more complicated and interesting systems.  But 
first we need to define entropy and temperature…  

  

 


